Radiative Corrections for (e,e’p) Reactions at GeV Energies
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A general framework for applying radiative corrections to (e,e’p) coincidence reactions at GeV
energies is presented, with special emphasis to higher-order Bremsstrahlung effects, radiation from
the scattered hadron, and the validity of peaking approximations. The sensitivity to the assump-
tions made in practically applying radiative corrections to (e,e'p) data is extensively discussed.
The general framework is tested against experimental data of the 'H(e,e'p) reaction at momentum
transfer values larger than 1.0 (GeV/c)?, where radiative processes become a dominant source of
uncertainty. The formulas presented here can easily be modified for any other electron-induced
coincidence reaction.
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L INTRODUCTION

Coincidence (e,e’p) reactions off nuclei can allow detailed studies of the nuclear wave function as well as quasi-elastic
reaction dynamics. The attractiveness of electron scattering is that the photon couples weakly to the electron and
proton, simplifying the extraction of information from experimental data. Unfortunately, photons are also massless
and can be copiously produced in such experiments. Real photons are emitted (Bremsstrahlung) when the charged
particles involved in the reaction are accelerated by the fields of either the nucleus involved in the primary hard
scattering (“internal radiation”), or by the other nuclei encountered by the incoming/outgoing particles as they travel
through intervening material (“external radiation”). The emission of real photons causes a discrepancy between the
detected particles’ momenta and their actual momenta at the scattering vertex, and so causes distortions in the
extracted experimental spectra. Conversely, amplitudes involving the emission of additional virtual photons affect
only the magnitude of the measured cross section.

The topic of radiative corrections is an old one, dating back to Bethe and Heitler, who first calculated the
Bremsstrahlung spectrum of an electron scattering in a coulomb potential [1], and Schwinger, who first calculated
the full first order radiative correction to this same problem (2]. For soft-photon emission, lowest order perturbation
theory is inadequate. Yennie, Frautschi, and Suura generalized this result to higher orders, showing how to deal
with soft-photon emission [3]. Tsai [4] and Meister and Yennie [5] derived explicit formulas for radiatively correcting
inclusive elastic scattering of electrons off protons, where only the electron is detected. Finally, a review article by
Mo and Tsai [6] summarized the approaches and approximations that could be used to radiatively correct data in
different situations and discussed the advantages of the Tsai over the Meister and Yennie results. More recently, de
Calan, Navelet, and Picard (7] derived a third set of formulas that disagree with the results of Tsai [4]. The current
paper considers radiative corrections for coincidence (e,e’p) reactions. Its goal is to emphasize the assumptions and
ambiguities involved in radiative correction formulas, in particular the differences between Refs. [7] and [6], and to
produce formulas applicable to coincidence reactions.

The primary cross sections of interest are the cross section for an electron to scatter off a proton into a solid angle
d§). and produce photons with total momentum in the range dw,

do
dQ.d3w

and the cross section for an electron to scatter off a proton into a solid angle d2, without emitting photons whose
total energy is greater than AE,,,

(1)

do
dQl,

The former cross section is necessary in order to propagate the radiative tail through missing energy and momentum
space, while the later can be used if one only wants to measure the missing energy distribution with the missing

(w < AE). (2)




momentum integrated out (four-momentum conservation can be used to determine the missing energy and momentum
not accounted for in the detected particles - see Section II).

Within QED it is straightforward to calculate these cross sections to low orders in the fine structure constant
a. However, electron-proton scattering also contains the strong interaction, which does not factor from the QED
corrections. If we were interested in radiatively correcting electron-muon scattering this problem would not be severe.
Both the first order elastic and Bremsstrahlung cross sections would be unambiguously determined, and only the
vacuum polarization correction to the second order elastic cross section would have some uncertainties.

In the case of electron-proton scattering, the situation is more difficult. Neither the first order elastic or
Bremsstrahlung cross sections are calculable exactly due to the extended structure of the proton. For example,
consider the expansion of Eqn. (2) to first order in ¢, which can be parameterized as

do do(®)
dQe ((JJ < AEm) = d_Qe - (1 — a[&l(AEm) + 62]), (3)
where
do(®
dQ. ep

is the one-photon exchange (Born) electron-proton cross section and the order « radiative correction has been divided
into two terms; the first due to Bremsstrahlung of real photons (4;) and the second term caused by virtual particle
corrections to the elastic cross section (d2). The choice of kinematics for the quasifree electron-proton scattering case
is discussed in Section II. The first correction, §;(AE,,), which determines the shape of the Bremsstrahlung spectra
is fairly well-determined and will be discussed in Section IIla. The second correction, d; is not well determined and
different formulas for radiative corrections to electron-proton scattering typically differ in their expressions for 4.

Fortunately, the choice of &3 is not too important, as long as it is done consistently. Radiative correction formulae,
such as Eqn. (3), are generally applied to electron-proton scattering data in order to determine doM /dQ,. Different
choices of 8 change the extracted values of do(!) /df2,. If one then uses these extracted cross sections in analyzing an
(e, e'p) reaction, as long as one uses the same 4z as was used in extracting o1, one will reproduce the correct cross
section. These points will be discussed in Sect. IIIb.

The correct calculation of &;, on the other hand, is very important. The lowest order calculations work well for
large photon energies but break down for small photon energies, where multiple-photon generation dominates. In this
regime, the soft-photon Bremsstrahlung diagrams need to be summed to all orders, which turns out to be equivalent
to exponentiation. Recently, the necessity of including multi-photon emission was shown in a practical example for the
3He(e,e'p) reaction [8]. In contrast, this work provides a more rigorous framework on applying radiative corrections
to coincidence (e,e’p) reactions, evaluating the effect of the various contributions and assumptions in the many-GeV
region. We further deal with the effects of multi-photon emission in Section IIlc.

In general, these multi-photon emission cross sections are too complicated to be simply used to extract the effect of
Bremsstrahlung from experimental data. At high energies, the individual photons are largely emitted in the direction of
the incoming or outgoing fermions. This allows the introduction of a peaking approximation that greatly simplifies the
calculation of the angular distribution of the emitted photon radiation. This approximation is discussed in Section IVa.
We discuss in Section IVb the spectrum for the emission of “external” radiation, which has essentially been discussed
before by Tsai [9] and Friedrich [10]. We also discuss in this Section the generalized peaking approximation, which
adds the effects of “internal” and “external” radiation in a consistent manner in the applied peaking approximations.

Section V discusses the Monte Carlo simulation methods used to enable a comparison of the radiative corrections
framework discussed with experimental (e,e’) and (e,e’'p) data. In Section Va we describe the general Monte Carlo
simulation method used, and how the radiative correction procedures were applied to this simulation. In Section Vb
comparisons of the described Monte Carlo simulation with experimental data from the Stanford Linear Accelerator
Center (SLAC) experiment NE18 are shown {11]. Section Vc discusses a “Modified” Equivalent Radiator Method, a
straightforward Monte Carlo simulation method which for most (e,e’p) experiments will be satisfactory to apply radia-
tive corrections. Again comparisons of this Monte Carlo method with experimental data from the NE18 experiment
are presented. Finally, Section VI provides a summary of the work presented.



II. KINEMATICS

This section considers the kinematics of the process
eA — evyp(A-1)"

where the residual (A — 1)* is an unmeasured state of (A-1) nucleons plus any other particles produced in the
reaction. Denote the initial and final four-momenta of the electron k = (¢,k) and k' = (¢/, k') respectively, the final
four-momenta of the proton p’ = (p°, p’), the four-momentum ¢ = k — k' = (v, q) transferred from the electron, and
the four-momenta of the bremsstrahlung photon w = (w°,w) where w® = |w|. The electron mass will be denoted m
and the proton mass denoted M. For the discussion of kinematics in this section, the electron mass will be taken as
negligible.

The real photon w appears in the energy-momentum conservation relation as an additional four-momentum in the
final state:

k+pa=Fk +p' +w+pla_y) (4)

All of these variables are four-momenta, representing respectively the initial electron, the initial target nucleus, the
scattered electron, the knockout proton, the emitted photon, and the recoiling (A — 1) system (possibly in an excited
state, as indicated by the asterisk). If one now denotes the values one measures for the missing momentum and energy
by Pm and E‘m, and their actual vertex values (in the absence of radiation) by pm and E,,, one obtains

Pm =P +w—-q=Pm+w

Em+Trec=6_€I_(p,0_M)—w0:Em+Trec—wov (5)
and so
Pm =Pm — W
E, =E,+ Tree — Trec + w?
~ B+l (6)

Note that the measured value of the recoil kinetic energy, T,ec, depends on the measured missing momentum and so is
also distorted by Bremsstrahlung photons. However, the contribution of Tyec to the missing energy is, in general, small
(and non-existent in the case of elastic ep scattering). The approximation Tyec = Trec is not used in the calculations
described herein, but merely serves to illustrate the overall effect of radiation on a measured (E,,, p,) distribution:
the real photons produce long “tails” which, at very high photon energy (w® > Em,pm), are described by the relation
E, ~ Pm = P, Elastic ep scattering provides a clear demonstration of these tails, since in the absence of radiation,
all strength is localized at E,, = pm = 0 (see Figure 1). It is seen that the radiated events are distributed along the
line with Ep, = |pm| as required for real photons.

The coincidence variables E,, and p, thus provide a natural basis in which to evaluate radiative effects. By
contrast, radiative corrections have generally been calculated in the framework of inclusive (e,e’) experiments — in
terms of their effect on the measured electron energy €. The effect of radiation on this quantity depends on the
direction of the emitted photon: Consider elastic scattering, with Born-level differential cross section dot /d§2er. The
reaction amplitude is fixed by the direction of the scattered electron (and, of course, the incoming electron energy).
If we treat this direction k' as fixed, the radiation of a photon parallel to K simply decreases the energy € by the
photon energy w°. If, however, the photon direction is parallel to the incoming electron, € is affected by an amount
that depends on the electron scattering angle. (Note that the scattered proton vector is also affected.} Thus, when
one comes to evaluate the total probability of emitting radiation that affects € by less than some cutoff energy AEmn,,
one has to perform integrals over photon energy and direction with interdependent integration limits. In the case of
coincidence scattering, independent integrals can be performed as the measurement of both scattered particles enables
one to select a more “natural” choice of variables — Ep, and pr,. In the elastic scattering example of above, if the
missing energy is measured to an accuracy AEp,, one is guarantueed that all measured events correspond to emitted
photons with less than AE.,,, regardless of the photon direction, or, equivalently, the ratio of /€.

The formalism described in this Section is based on the work of Mo and Tsai [4] [6], which has provided the standard
radiative corrections prescription for three decades of inclusive electron scattering experiments. The basic formulas of
Mo and Tsai have been reevaluated in a coincidence framework: one can no longer integrate over all final states of the



scattered proton as in (e,e’) measurements, but must calculate the radiative effect on both the scattered electron and
proton. The resulting distributions are then included in the event generation of a Monte Carlo simulation and folded
with the experimental detection range in k/ and p’ as described earlier. Throughout this work we will use for the
numerical examples the kinematics given in Table I and denote the specific kinematics with its momentum transfer
squared value Q2. Specifically, some of the kinematics given in the Table are consistent with the kinematics of the
NE18 experiment at SLAC [11].

III. INTERNAL BREMSSTRAHLUNG
A. First Order Internal Bremsstrahlung
The probability for radiating a single Bremsstrahlung photon is represented by the four Feynman diagrams of Figure

2. Since each of these diagrams involves the same final state, the amplitudes must be summed coherently:

do
B3k’ d3w

These four matrix elements refer to the emission of a photon by the incident electron, scattered electron, incident
proton, and scattered proton respectively. To evaluate them, one requires a knowledge of the coupling of the electron
and proton to the photon. The electron coupling is given exactly by QED and is specified by the electron current

JE(q) = etie(k + g)7"uc (k). (8)

Here, e = —V/4ma is the electron charge and wu. is the electron spinor, normalized to @e(k)u.(k) = 2m (m is the
electron mass). The proton-photon coupling is complicated by the fact that the proton is in general bound and
off-shell, and the description of such a proton is only approximately known [12]. For the present, we neglect these
effects and discuss elastic scattering from an on-shell proton:

J}(q) = —etip(p + O)T*()up(p)- (9)

The deviation of the proton from a point particle is described by

~ |Mei + Mef +Mpi + Mpflz- (7)

1 -
I*(q) = Fi(¢*)v* + WFz(qz)za“ Qs (10)

using the free proton form factors. Again, the proton spinor is normalized to the proton mass: #,(k)up(k) = 2M.
Using these couplings, one obtains the following expressions for the first-order Bremsstrahlung matrix elements:

. vV (k, —w,) +m v
M = sy [T L ey

2
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ng)_“z (P )T u(gp)up(p)
2

o'l k,’, +wy)+m € i
7( ) ] vuelk) r tip(p')T u(gp)up(P)
4

(k' + w)2 — m?

Cuge 2
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Myt = i, (0) (—e)T* (w)ey [ ’Y(pfpl :)2 ~)L i” ] T (@)up(p) g 5 Be( Yrute (k) (11)

Here, ¢, is the polarization of the Bremsstrahlung photon, g, = p’ —p is the momentum transferred to the proton if the
electron emits the photon, and ¢ = k — k' is the momentum transferred to the proton if the proton emits the photon.
Also, p is a parameter representing the photon mass, which will ultimately be taken to 0. The single ambiguity in
Equation 11 is the assumption that the intermediate proton propagates like a Dirac particle and that there are no
contributions from excited hadronic states. This should be a good approximation for small photon energies.

The single photon emission cross section can be calculated from these expressions, with no further approximations.
However, the formulas simplify greatly in the limit that the photon energy w9 is much less than the momenta of the
initial and final state fermions. In this case, the basic one-photon exchange (Born) amplitude Mg},) factorizes from
the Bremsstrahlung amplitudes, giving



Mai = eMY (—e.k)

w-k
LY
My = —eMY (:f::)
Mps = —eMP) (5%%') ) (12)

This limit is referred to as the soft photon approzimation (SPA); it can be seen to be reasonable from the distinctive
% energy dependence of the emission amplitudes. Part of this approximation is the use of the elastic (unradiated)
values of the fermion momenta k, k/, p, and p’ in the above expressions. These elastic values are also used in the

evaluation of the one-photon exchange amplitude,

62
MG = (k' Yy ue(k) g3 B (@) u(@)up(p). (13)

The resulting total cross section for single-photon Bremsstrahlung is thus given by

do doW| —a [ K 14 k p 1?
= - - + . (14)
dQed’w  dQe |, 4am2 0wk w-p w-k w-p
For later convenience, we write this as a product of photon energy and angle distributions,
dQedQ,du®  dQ. wo
ep
where
02 / ’ 2
o k P k P
A0, =~ [w,k, e w,k+w,p] (16)

depends only on the photon direction &. Integrating Equation 14 over photon angle and energy, one obtains the cross
section for emitting a photon of energy less than AE,:

do , o ABm o do
dﬂe ((4) < AEm) —/0‘ d wm
do(D)
=~ | (-20)>_6®)8(p;)B(pi,pjs AEm), (17)
€ ep i,]
where
AE
™ 1 Pi - Dj
B(p;,p;, AE =/ diw E . 18
(p p] m) o 871'2(4)0 (w 'pi)(w 'pj) ( )
Here, two pieces of convenient notation have been introduced. p; fori =1,...,4 is used to represent the four fermion

momenta k, k', p,p’ in turn; the constants ©(p;) denote the signs accompanying each term, 6(k) = O(p') = —1 and
O(k') = O(p) = 1. This integral can be evaluated using the expression

w-k = w(e — |k|cos¥), (19)
as well as introducing a new variable z as indicated in Equation (I11.19) of Tsai [4]:
Pz = zpi + (1 — 2)p;. (20)

One then obtains



_pipj 1 AEm w2d‘d 1
B(pupg, AEm) = —“27‘_ L d.’l)L 0 p§w2 n u2(p2)2
1 2
] / dmiln (AEm) + ——l-—ln (p_z)
2r Jo  PE Pl 2p}  \p?
P2 —Ipal, (P2~ Ipzl) ( 2p3 )
et (B o)+ Gr ) 21
We note that the sum Zi,j O(p:)O(p;)B(pi, pj, AE.) is negative, making the total cross section (and the angular
distribution A(®)) positive.

One observes that this expression contains two non-physical divergences: when the “photon mass” y — 0 and
when the energy cutoff AE,, — 0. Both of these are due to approximations made so far, and will be addressed
in later sections. Before continuing, however, it is worthwhile to try to evaluate the validity of the soft photon
approximation. As mentioned above, the one photon Bremsstrahlung calculation can be computed without this
approximation. Accordingly, the ratio of the full to the soft photon calculation is presented in table II for —¢? = Q?
=1 (GeV/c)? and a variety of photon energies, and in table III for a photon energy of 100 MeV and a range of Q?
from 1 to 15 (GeV/c)?. Qualitatively, one sees that the SPA improves at low photon energies and high momentum
transfers, as expected. At Q2 = 1 (GeV/c)?, the discrepancy between the two calculations is less than 1% for photon
energies less than 10 MeV, while for a photon energy of 100 MeV the discrepancy drops to 5% at Q% = 9 (GeV/c)2.
The discrepancies are considerably higher at the other settings listed, however. Two effects are involved: the shape
of the Bremsstrahlung energy spectrum, and the evaluation of the matrix elements using elastic (w® = 0) particle
vectors (i.e. neglecting the difference between ¢ and q in Equation 11). In an attempt to separate these effects, table
II also contains the SPA to full ratio using a point-like proton, i.e. a proton whose form factors are GE(Q?) = 1
and Gar(Q?) = 1, (these are the Q% = 0 values of the form factors of the physical proton). At Q? =1 (GeV/c)?,
one sees that most of the discrepancy is due to the g-dependent form factors. To correct this one must evaluate the
cross section using a value of ¢ which is corrected for the effect of radiation. In other words, one must distinguish
between photons emitted before and after the hard scattering, a task which is complicated by the interference terms
between the Bremsstrahlung amplitudes Mej, Mef, Mpi, and Mps. However, such a correction can be built into the
calculation, as is explained later on. The maximal E,, range below pion production threshold is about 140 MeV, so
the w® = 100 MeV results in table II can be considered a typical worst case. Assuming that the correction to ¢ at
the hard scattering vertex can be accomplished, one is faced with a SPA inaccuracy of at most 2% for radiation in
the direction & and 7% for radiation in the direction k’. We point out in passing that these discrepancies are given as
fractions of the radiative corrections, which are themselves small; the effect of these discrepancies on the final cross
section is thus much less than the quoted percentages.

B. Virtual Photon Corrections

One of the non-physical divergences observed in Equation 21 was found in the limit 4 — 0. This is known as an
“infrared divergence”, and is a direct consequence of the fact that the one photon Bremsstrahlung cross section is
of order o® and that other diagrams of the same order have not been included yet. These are amplitudes for the

(2) (1)
ep

exchange of two virtual photons, collectively referred to as Mep . These must be summed coherently with Mep,

which represents the same final state:
M2, = MO+ MBTMY + MPTME) + O(a?). (22)

Figure 3 contains a summary of the second-order amplitudes. Unfortunately, several of these depend implicitly on
the strong interaction via the poorly known proton current. The point of view advocated by Mo and Tsai and
espoused here, is to include only those terms which do not unambiguously depend on the strong interaction. Certain
amplitudes such as Mef,a) in the figure are calculated, but only infrared divergent terms necessary to cancel those
from the Bremsstrahlung cross section are kept; the rest are left buried in the electron-proton cross section. It should

be noted that other workers {7] have derived alternative expressions for the virtual radiative correction, by including
some of the components left out by Mo and Tsai. However, the point to be made here is that the evaluation of M.(a:,)
includes the use of proton form factors extracted from previous data. The radiative corrections applied should thus
be consistent with whatever corrections were used in extracting these form factors [13,14]. The standard prescription
given by Equation I1.6 of Mo and Tsai [6] is thus the appropriate choice, with the addition of the Schwinger correction
and vacuum polarization from quark and heavy lepton loops [13,15].



The second order diagrams depicted in Figure 3 are grouped into three categories depending on their sensitivity to
the strong interaction. We use the same evaluation of these amplitudes as Mo and Tsai, and restate them here. Also
used is the notation

Ldx P2
K(pi,pj) = pi ‘Pj/o Eln ('#—2>, (23)

describing the form of the infrared divergent terms. Note that

2

K(pi,ps) = In (7:2) , (24)

and that the IR divergent term of Equation 21 has this form.
The electron-photon vertex correction Mgl) is known exactly from QED. In the limit Q? > m? (which is well
satisfied by momentum transfers in the GeV/c range), one obtains

) « m2b 3 _q2
MED =2 [ - K(k,K) +In(g) + 5 In(5) 2} M. (25)

The vacuum polarization correction, Méf,'?’, contains contributions from both lepton and hadronic loops. The
former are known unambiguously from QED, the latter are calculated in a similar manner. They contribute

MED = ol 5P 26)

w_ 1 ,/ 1+ ﬂ";
5p 37r( ) [ 1_ mzjl}) (27)

and ), sums over the different flavors of leptons and light quarks with mass m;. In the limit Q2 > m? one obtains

v 1 5 _q2
5,.P=§;[-§+1n(m2)]. (28)

T

where

As there are no IR divergent terms in the vacuum polarization amplitude, further contributions from the strong
interaction are neglected. Finally, M(2 3 includes two-photon exchange and nucleon self-energy graphs, both of
which depend intrinsically on the strong interaction. Only the IR divergent terms are used:

MES = 2 (K(k,p) + K(K,p') — K(K,p) = K(k.p)
-~ K(p,p) ~In (3] (29)

The total cross section for emitting a photon with energy less than AE,, is now obtained by adding all of these
terms to Equation 17. The dependence on the photon mass cancels as required, leaving

do do ()

dQ (w < AE ) dQ |ep (1 - ‘ssoft(AEm) - ‘shard) ) ‘ (30)
where
Ssoft(AEm) = 2ax Z O(p:)©(p;)B(pi, pj, AEm) (31)
i,
and
_ 3 2/, 2 1 vp/ 2
6ha,d—-2a[— 4—7rln(—q /m )+;—Zi:51."(q )] (32)



Here, dd"—(;lc) lep represents the one-photon exchange ep cross section, dhard is the contribution from the second order vir-
tual photon diagrams, and dsos(AE,,) is due to one photon Bremsstrahlung. B(p;, p;, AE,,) is simply B(p:,p;, AEm)
of Equation 21 without the IR divergent term. The subscript “hard” refers to the dominance of high momentum
virtual photons in the dharq correction after cancellation of the IR divergences. The subscript “soft” refers to the
assumption w® < €, € used in the derivation of dsof, (cf. the SPA in Section IITA).
In order to separate out the contribution of the proton we divide dsoft(AEy,) into three parts,
Seott(AEm) = 851 (AEm) + 633

soft

(AE,;) + 685 (AE). (33)

e is the electron Bremsstrahlung contribution, invelving B(k,k,AE,,), B(k',k',AE,,), and —2B(k,k', AE,,).
.. includes the electron-proton interference terms —2B(k,p, AEy,), 2B(k,p',AE,), 2B(k',p,AEy;), and
—2B(K',p', AE,,); while 655, is entirely due to proton radiation and includes the remaining terms B(p,p,AE,,),
B(p,p', AE,), and —2B(p',p', AE,,). Table IV contains values of these terms as well as dhard at various kinematics.
Note that 8para is negative, and so causes a net increase in the total ep cross section. Its magnitude is also small: less
than 10% up to Q2 of 15 (GeV/c)2. The direct proton contribution 8°%, varies from 2% (lowest Q?) to 10% (highest
Q?) of the electron contribution §2%,. The electron-proton interference is about twice the size of the direct proton
term for the first four kinematics, leading to a net 6-20% contribution of proton Bremsstrahlung, but only about half
the size of the direct proton term for the last four kinematics. This is governed by the ratio of €’ to € (055, is zero in
the limit ¢ = €). From Table IV it is clear that proton radiation, though afflicted by strong interaction uncertainties,
cannot be neglected at large momentum transfer.

A complete evaluation of the functions B(p;, p;, AEy,), and thus of Equation 31, is often done numerically. However,
analytic evaluation is possible, as outlined in the Appendix. In general, numerous Spence functions ® must be

computed, where
 —In(|1 -
() = / @ =wl) g, (34)
0 y
As an aside, the contributions of these functions turn out to be important only when their arguments are large

(Jz| > 1), and in this case an excellent approximation is provided by

&(z) = 7 In’(|z]). (35)

N =

The formulas for ds0f simplify, however, in the “ultra-relativistic (UR) limit” where the momentum transfer and
vertex momentum of the final electron are large compared to both the nucleon and electron mass. In this limit, one
obtains the following closed forms:

ar Q@ kk' —q?

bee =710 ((AEm)'«’) [“‘ (%7) B 1}

ar Z2a p0p01 __q2 1 2 pOI
b0 = 7 [‘“((AEmV)[I“ (W) ‘1] T3l (H)]

v Zal [ p°p” k kK’ k\ 1, (kK k
Jep_ ——ﬂ—[ln (KE—?;) In 767 +ln (.AT,?" In (}c_’ +§ln (m) In P‘) . (36)

The atomic number Z is retained in these forms to remind the reader that the results are also valid for electron-
nucleus scattering. Furthermore, this allows for easy differentiation between contributions involving the electron
Bremsstrahlung (~ Z°), the electron-proton interference (~ Z!), and the proton Bremsstrahlung terms (~ Z?).
These forms reveal the essential features of one-photon emission: all of the dependence of dsofi (AEm) on AE,, takes
the form In ﬁ;, but additional terms independent of the photon energy cutoff are also present. These expressions
will prove very useful later on, and so it is worthwhile to see how good the UR approximation is. A comparison
of 8eoft(AE.,) computed using Equation 21 and Equation 36 is presented in table V. One sees that in the chosen
kinematics the approximation is accurate to at least 2%. This is because the electrons are always highly relativistic
and the contribution to § due to the final nucleon is small when non-relativistic. The nucleon contribution becomes
significant only when relativistic (it is equal to the electron’s in the very high energy limit) and in that case Equation
36 provides a good approximation.

It is worthwhile to compare our results, given by Equations 31 and 32 with those of Mo and Tsai (Equation I1.6),
denoted 8. The only difference between the two calculations is that our calculation integrates the photon emission




up to a maximum photon energy of AE,, (corresponding to a missing energy of AE,,), while the calculation by
Mo and Tsai integrates over all photons corresponding to an energy loss of less than A¢’. The two calculations are
equal only in the limit that the proton mass is large in which case the electron energy loss equals the energy of the
emitted photon. In general, the energy of the emitted photon is greater than the electron energy loss implying that
the calculation by Mo and Tsai at a given value of A¢’ contains also contributions of additional photons with energies
AE,, larger than A¢’. The degree to which this energy can be different is determined by the ratio of € to ¢/. Table
VI compares the results of both calculations. As expected from the previous discussion it is always true that

Sur(A€ = AE) < §(AEm = AE) = bhard + 8s05t(AEm = AE), (37)

where the largest difference occurs when ¢ is far larger than €'
Similarly, to revisit the role the proton is playing, it is useful to contrast our formulas with the Schwinger formula
[2] that ignores proton recoil and radiation,

20 k 13 —q? 17
dschw = —7T_ [ln (-A—E) - ﬁ] [ln (;1—2-) - 1] + % (38)
Table VI verifies that the Schwinger correction, in it’s simplicity, gives a fairly good approximation of our results,

that only gradually becomes worse at higher energies. This is due to the overestimate of the electron Bremsstrahlung
contribution in the Schwinger correction, partly compensating the positive contribution of the proton radiation.

C. Higher Order Bremsstrahlung

In the previous section, we removed the infrared divergence from the first order Bremsstrahlung cross section. The
other divergence that needs to be understood also occurs in the limit AE,;, — 0: the number of photons emitted
becomes infinite as w — 0. In other words, the first order perturbation expansion breaks down as AFE,, becomes
very small, and one must include the possibility to emit many soft photons. In actuality, the probability of scattering
without losing any energy to Bremsstrahlung is zero so the actual cross section approaches zero as AE,, — 0.

It was originally determined by Yennie, Frautschi, and Suura (ref. [3]) that the emission of soft photons can be
summed to all orders via exponentiation:

do , o _ do®

To- @ <ABn)=—o—| e woit (BEm)(1 _ 6} ard). (39)

eep

The notation (w?) indicates that this expression represents the cross section for emitting any number of soft photons,
each with energy less than AE,,. In practice, however, one is interested in the total photon energy emitted. This case
is discussed below, and found to agree with the preceding formula to within a correction of order .

Recall that the probability for emitting a single Bremsstrahlung photon has a ;35 energy dependence that factors
from the angular distribution A(&) (Equation 15). In order to maintain a handle on the AE,;, — 0 divergence for the
moment, we write the cross section to emit one photon with energy w) > Ey, along with any number of photons each
with energy less than Fy:

do do) A())
—_(n=1,E) = e~ dnore(Bo) (1 _ 5, VU g0 _ F, 40
dQedw(l)dQI ( 0) dQe o ( h d) w(l) ( 1 0) ( )

Here, 6 is the usual step function, and d?; indicates the emission angle of the photon w;. Similarly, the cross section
to emit two photons with energy w9 > Ep and w) > Ey, along with any number of photons with individual energy
less than Fy is

do do®

— = —Juoft(EO) — 41
dQedw‘l’dQuﬁungQ(n 2 Eo) a0, epe (1= Ohaca) (41)
1 A(w) A(2)
5 w? a(w(l)—Eo) wg e(u)g—Eo).

Generalizing this to the case of n photons of “large” energy, one obtains:



do doV)

— “6soft(E0) 1 —_ 6 ar
0,400, - dwddy, v B0 = o, o (1= Ghara) (42)
1 AW A(J,
= ((Ufl,l) 9w’ — Ey) - - ((Ug ) 0(? — Ey).

The differential cross section for emitting a total energy >, w? = Ey can be determined by multiplying the above
with a delta function and integrating over individual photon energies. Also, we sum over all numbers n of emitted
photons:

oo Eeot Etot
0 do
e dE”(Eo) > : dufdQ - [ dndfn g gy (7 Bo)
o n=0 v &0 0

6w+ +wl — Eior). (43)
One observes that the angular integration can be done at once for each photon, and for convenience we write
A= / 40, A(S). (44)
We then combine equations 42 and 43 to obtain

do do)
dQdE;; (Bo) = 4q

eep

e_ssoft(EO)(l — 5}‘ d ( / dUJO ) 5(&)1 + +UJ - Etot) (45)

This is a form that we will encounter again later on. It can be evaluated by substituting an integral form for the delta
function:

6(2‘-’-’ Etot) — 71_/ 11(2 w? Eme)dm (46)
P —00

which gives Equation 45 the familiar form Y .., fl—',' = e*. Carrying through the computation, one finds that the
E, — 0 divergence in e~%ot(Eo) s canceled by the similar terms due to the Ey lower integration limit. Taking the
limit Ey — 0, the following relatively simple form is obtained:

do do(M
dQ.dE,.,:  dSd.

(1 — Shara) (—Suoge (Erot)) e~ oo Bre) F(2). (47)

ep

The function F()) is expressed in terms of the gamma function and Euler’s constant C = 0.577; if we recall that A is
of order «, we can expand this function in powers of A:

e—CA

YOES))
m2\2
12

F(\) =

=1- 4., (48)

One obtains the cross section for total emitted energy less than AE,, by integrating Equation 47 from F;,; = 0 to
Etot = AE‘m

}: 0 < AFn) = | (1 = fpara)e— o BED[1 4 O(a). (49)
dQe o

This agrees with the previous exponentiated formula, Equation 39, to within a correction of order a?.
Exponentiating 8., thus provides a good approximation to the Bremsstrahlung cross section for emitting a total
photon energy up to a certain cutoff value. The exponentiated cross section also has the correct limiting behavior,
lxmAEm_,o dQ (Fw® < AE,,) = 0, since 8,05:(AEm) ~ B(pi,pj, AEn) ~ In(AEy,). Note, however, that dpard is
not exponentlated Mo and Tsai [6] take the point of view that whether or not to exponentiate this term is an open
question. As with the choice of which second order diagrams to include in 6pard, the crux of the matter is that
experiments comparing results with one another must use the same prescription. In the case of dnarda, however, this is
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generally a moot point since the correction itself is small: Snara varies from 0.07 to 0.09, and so the difference between
(1 — Ohara) and e~ fnara ig at most 0.4%.

In Table VII we compare as a numerical example the first order and the exponentiated radiative corrections for
various kinematics and total photon energies emitted. As one can see the difference can be quite noticable, supporting
the findings of [8], where the inclusion of multi-photon emission showed a drastic improvement in the agreement
between 3He(e,e’p) data and a Monte Carlo simulation. As expected, this difference grows especially large for small
values of the total photon energy emitted. However, the effect can be as large as 10% up to a total photon energy of
100 MeV as Q2 becomes as large as 15 (GeV/c)?. Likewise, multi-photon emission alters the radiative correction at
the 10% level down to a photon energy AE, of 1(10) MeV at the chosen kinematics for Q? = 1(7) (GeV/c)?. These
are some relevant scales to keep in mind to deal with multi-photon emission when analyzing experimental data.

IV. PEAKING APPROXIMATIONS AND EXTERNAL BREMSSTRAHLUNG
A. Peaking Approximations

We have now calculated the energy distribution for multi-photon Bremsstrahlung to all orders, given the soft
photon approximation and to within an order o? correction. However, to calculate radiative effects in a coincidence
framework, one must know the effect of the emission cross section on all measured particle vectors. The integrated
probability up to an energy cutoff is not enough, and one needs to know the angular distribution of photons as well.

The angular distribution of single photon Bremsstrahlung is given by Equation 16, and is plotted in Figure 4 for

2 = 1,7, and 15 (GeV/c)?. One salient feature of the distribution is immediately apparent: the radiation is strongly
peaked along the directions of the incoming and outgoing electron. Only a very broad peak is seen in the direction
of the scattered proton at Q% =1 (GeV/c)?, but it becomes more sharply defined as Q2 increases. These features
suggest a simple approach to the angular distribution, known as the “peaking approximation”: the single photon
Bremsstrahlung spectrum may be divided into three discrete photon directions, along each of the vectors k, k', and
p’. In other words, we replace A(w) in Equation 15 with the simple form

Apeaking(@) = Ae8(& — k) + Aer6(& — ') + Apr6(@ — '), (50)
where [dQ,4(w) = 1.

The terms of the exact one-photon angular distribution A(&) may be divided into three groups, due to the electrons,
the electron-proton interference, and the protons respectively:

: 02 1] 2
R aw k k
160 = - (55 5%)
o K __ K A
w-k w-k w'p w-p
P r\’
- — . 5
(L-2)] 2
In order to better understand the structure of the peaks, consider the expansion of the first term in a polar coordinate

angle 0 describing the direction of photon emission relative to the k direction. Using equation 19 one obtains, in the
region 8 < ]Ll,:T <1,

k! E N\ |k
20~ __* ~ ™M g2
w(w-k’ w-k) 4m40’ (52)

indicating that extremely close to the k peak, the emission probability actually drops to zero. This feature is too small
to be seen in the electron peaks of Figure 4, but is apparent in the much broader proton peak at Q% = 15 (GeV/c)?
(since ]%’17[ is of order 10~ !). Further away from the peak, in the region "—:T < 6 < 1, the angular distribution falls off

quadratically with 8:

w-k w-k 92

uﬂ( K___k )2~i. (53)
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This behavior is especially apparent in the electron peaks, where fi is of order 10~%. We will refer to this gz shape

later on.
We next need to determine the values of Ae, Aer, and Aps, by integrating the various terms of A(w) and distributing
the results among the three peaks. The first (electron) term of Equation 51 produces two terms of the form

02 2
ow k a
T an? /dQ"W - (54)

(one for each of k and k’). Since the integrand is highly peaked in the direction k (or k'), it is assumed that all this
strength contributes in the k (or k') direction. Next consider the integral of the cross term,

02 /
aw k-k

In this case the integrand peaks in the k and k’ directions. We evaluate it using

L Y R /
/dQ ko k ~/d97————-kk M+/ds27————(k,kk |

Yw-k)(w- k) (- k)(k k)0 k) (w- k) WP
_om fe+|k\ | 2r (K +|K|
-2 (6_ m) + (_—k,o + |k'|) (56)

This expression approximately integrates over the two peaks separately; the first and second integrals are assumed to
contribute to the k and k' peaks respectively. Combining these equations, one obtains for (k,k’) > 0 the “typical”
peaking approximation for electron Bremsstrahlung:

A = g[ln (4k2) )

t \'m?
a k"
Ael = ;[ln (Tn'2—> - 1] (57)

We can further assume that the third term of Equation 51, although only broadly peaked at intermediate energies,
contributes entirely to the final proton peak, yielding

_ap® (P +|P
=Sl (Bsin) - 2 (55)

Some Bremsstrahlung strength still remains, due to the electron-proton interference term of Equation 51 and to
the non-peaked contributions missed by the approximation of Equation 56. This is true even in the ultra-relativistic
limit, where one expects the peaking approximation to be the most valid (see Fig. 4). If one uses the closed form UR
limit expressions of Equation 36 to determine the difference dsoft (Ey) — 8sot(E2) between two energies, and compares
this with the result using only the peaked strength described by Equation 57 and 58, one finds two missing terms.

These are
a E2 |k|
wln(E1)4ln(|k’|) (59)

due to the electron-proton interference term 850, , and

A=Zmm (%) 21n (1;9;—8@> (60)

due to the non-peaked strength in 62%,. In table VIII we compare the exact calculation of the radiative correction factor
in the UR limit (as given by Equation 36) with the factor generated in the peaking approximation. At all kinematics
shown reasonable discrepancies show up, which can be understood by also tabulating the effects of removing the
two missing terms. To resolve this our approach is to preserve the total strength (as evaluated in the UR limit) by
distributing the contributions of these non-peaked terms among the three photon peaks. We choose to split the two
terms evenly between the electron peaks:
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%=+ il + 1 (1250,

|k’ 2
~ a (k| 1 — cos(f.)
Ael —Ael+ W[Zln(lkl|)+ln( 2 ]
Xy = Apr (61)

This set of formulas can be termed the “extended peaking approximation” for single photon Bremsstrahlung. To
facilitate notations, we will use the notation A below to mean ), i.e. we will keep on assuming the “extended peaking
approximation”.

From Section III C, we know that including higher order Bremsstrahlung is critical in evaluating the energy spectrum
for low photon energies. One is then led to consider its effect on the angular distribution. Calculating such higher
order contributions directly from Equation 16 is a formidable task. Instead, we observe that the single photon peaking
approximation,

do de®M| 1
0. | 0

dQedwr ~ dQe | w

(/\eé(dz —B) 4+ Aerb( — ) + A 8(& — ;5/)) , (62)

effectively provides us with three independent single photon energy distributions, each for radiation in a fixed direction.
We can then proceed in the manner of Section IIIC and determine a multiphoton spectrum, this time in terms of
three energies: the total photon energies Ee, Ee, and Ey emitted in each of the three peaked directions. The total
radiated three-vector is then simply

Wiotal = Eei‘\: + Ee']‘;l + Ep'i’\" (63)

Furthermore, radiation along the direction of a given particle can be interpreted as radiation due to that particle.

In this way we correct the g vector used to evaluate d;r;:) at the scattering vertex for energy radiated before the

ep
scattering (i.e. radiated by the incoming electron). This was seen in Section IIIA to be the source of the largest

discrepancy between the soft photon approximation and full calculation for single photon radiation.
By analogy with Equation 45, we obtain the cross section to all orders for radiating a total energy FE. along k, Fes
along k', and E, along p’, as well as any number of soft photons with energy less than AE,,:

oo o0 OO

e (1 — Spara) Y > Z

ep =0 m=0n=0

1 : Ee e0 A e0 el
7l H AE wiweo §(wy+ -+ W — Ee)
Y \i=1 m J

1

1 id Eor 0 A e/O e/O
W(H/ dw"iw-e"@)‘s‘w 1+t — Ee)

do do®
dQdE.dEsdEy (AEm) = dQ,

=1 AEm
1 n EPI 0 A 10 /0
7{'( d“’pi"ﬁ>5(“’p1+"'+wpn—Ep')- (64)
¢ i=1 AEm wp i

Using the same technique as in determining Equation 47, one obtains:

do do(®

dQ.dE.dEsdE, ~ dQ.

e_'snoft(AEm)(l - 6hard) eAe ln(Eg/AEm) %‘F(Ae)
ep
« eret M(E1 [AEm) %‘:—F()\el)

xers (B /AEm) ML ()Y, (65)
p

Again, the )s are of order «, and so F(X;) (Equation 48) is 1 to within a correction of order o?. We see that the
E‘(KIEZF dependence of g5 (AE,,) will be canceled by the other terms of the expression, taking care of the AE,, — 0

divergence of the single photon spectrum. By construction, the Xs of the extended peaking approximation provide a
subdivision of the terms of st (AEm) which depend on AE,:
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E\ ~ ~  ~
Osoft(E1) — Osore(E2) = In (ﬁ) (Ae + Aer + Ap), (66)

where E; and E; are two energies (note that this is true only in the UR limit). However, dsf contains additional
terms. Using Equation 36, we find that these terms can also be subdivided in terms of the As:

Vee )
AFE,
\ /eklo

8o(AEm) = Ae In(

6e:(AEm) = Ae/ ln(Z—E:)
/0
8 (AEm) = Ay In( VAA;” ). (67)

Employing these definitions, we can take the limit AE,,, — 0 to produce our final result for the multi-photon peaking
approximation:

do _ do® (1 = Gnaea)
d0.dEdE.dEy ~ d |,

xe™ 0B (— 5 (Ee))e ™0 B (=5, (Eer) e (Bo) (=6, (Ep))
do(V)

= dQe (1 - 6hard)

Aeder Ay 1
X 7 7.
(VER e (VEK ) et (/MpY) ' EIX ELFX ELEY

ep

(68)

The cross section thus factorizes neatly into three independent functions, for the total energy emitted in each of the
three radiative tails.

The angular distribution implied by the above equation can be evaluated easily by a Monte Carlo program by
randomly generating the energies emitted in each direction and adjusting the fermion vectors accordingly. However,
it is worth studying the multiphoton angular distribution analytically, to determine the approximate shape of the
multiphoton peaks. For our calculation to be valid (or useful), we must confirm that these peaks are substantially
broader than the single photon peaks, which were approximated as delta functions in Equation 50. To accomplish
this, we employ a change of variables: from E., Ees, and Ep to E, u, and v. Here, E is the total radiated energy
E. + E. + E,, while the emission direction is fixed by u and v:

u

(69)

I
o T

v

!

Note that u and v vary from 0 to oo with u,v — oo corresponding to emission in the e direction, u — 0 corresponding
to emission in the e’ direction, and v — 0 corresponding to emission in the p’ direction. The Jacobian between these
two sets of variables is straightforward:

dE.dEdEy,  dEdudv

E.EcEy;  Ew (70)

Consequently, the multiphoton emission cross section (Equation 68) can be rewritten easily in terms of the new vari-
ables. The dependence on the total energy E factorizes completely from the angular distribution, and the integration
over emission angles can be accomplished, yielding

do do(V (v/ Mp®)*e

b - a0 |, 0 6hard)(\/kk')'\e(\/kk’)&'
1

eep

X El—Ae —ACI—API
F(l + Ae)l—‘(l + Ae’)F(l + Ap’)
L1+ Ae + Aer + Apr) '

X(Ae + Aer 4 Apr) (71)
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Recalling that the As are of order o, one finds that the ratio of gamma functions on the last line is 1 to within the usual
O(a?) correction. To within this accuracy, this distribution agrees with the previous multiphoton formula, Equation
47.

The analysis of the photon distribution simplifies greatly if one neglects proton radiation. Taking, in the peaking
approximation, @ to be the angle between the photon and k, and 8. to be the usual scattering angle between k and
k' (note that in the peaking approximation the photon is emitted in the plane defined by k and k'), one finds for
k1

do sin(fe/) " e
dLdED " 01w (72)
and for 8 - 0. <« 1,
d i e =Ae
o sin(f./) (73)

d0.dEd6 " (9 g, )

The photon spectrum thus drops away from the peaks at the rate ~ %. As this is more gradual than the ~ 51; falloff
of the single photon peaks, our calculation of the multiphoton distribution from perfectly peaked single photons is
reasonable. To quantify the effect of multi-photon emission on the angular distribution, table IX shows the fraction of
photons emitted at an angle greater than Af from either the initial or final electron directions for both the exact single-
photon emission cross section and the multi-photon emission cross section, as calculated in the peaking approximation.
For Ad ~ 1 deg, typically around 10% of the photons emitted in the multi-photon peaking approximation are in the
intermediate region. This number increases slowly with Q2. In contrast, the single-photon emission distribution
gives about 3% in the intermediate region at Q% = 1 (GeV/c)? and this number decreases rapidly with Q2. Thus,
the multi-photon angular distribution does dominate the single-photon distribution in the intermediate region and
as long as one isn’t probing the angular distribution of the photons on scales less then ~ 1 deg. it is consistent to
calculate the angular distribution using the multi-photon peaking approximation.

Of course, in the case of proton radiation, the peaking approximation is suspect from the very beginning. Its use
hinges on the relatively small Bremsstrahlung contribution of the proton, and on the resolution of the experiment.
Also, as pointed out at the beginning of this section, at sufficiently high photon energies all radiative tails converge
on the same E,, = Py, kinematic path. The sensitivity to the precise angular distribution is thus most apparent at
low photon energies. The effect of the peaking approximation will be examined in Section V for one of the NE18
kinematics.

B. Inclusion of External Bremsstrahlung

External Bremsstrahlung refers to the spectrum for the emission of Bremsstrahlung photons in the field of nuclei
other than the one participating in the hard scattering. The more massive outgoing proton is subject to much smaller
accelerations, and emits a negligible amount of external radiation. On the other hand, the electrons will experience
these losses as they move through the target material and traverse vacuum chamber windows and air gaps. A numerical
solution, in the complete screening approximation, for the probability that an electron of momentum |kl radiates a
total energy of E°** when traversing t radiation lengths of material has been given by Early [16]. We will use the
following analytic form for this probability distribution [9]

1 bt (E\® __ (B
r(1+bt)Eext(|k|) 2 (Ikl)’ ™)

where the parameter b depends on the atomic charge Z of the target material:

1 Z+1
b_§(12+ZL1+L2>

Ly = In(184.15) — %m(Z)

L, =1n(1194.) — %ln(Z). (75)

The function $°** is a correction for large photon energies, expanded to second order in LoNa
gep p T
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3
t(z)=1—-z+ Zz2. (76)

This analytic form differs from the numerical solution by a fraction that varies between about ¢/10 and ¢/5 as E***
varies between 0 and 0.8¢ for ¢ < 0.1 [16]. For example, the deviation at E*** ~ 0 is ~ 1% for a t = 10% radiator.
The discrepancy increases for £t > 0.8¢, but this is typically outside the experimental acceptances.

External radiation is far simpler to treat than internal. First of all, the particles radiate independently and so
incoherently, and this eliminates the non-peaked strength caused by the interference terms of 1nternal Bremsstrahlung.
Furthermore, proton radiation is suppressed relative to electron radiation by the factor ( M) < 1078, and so can
be neglected entirely. Equation 68 can thus be extended in a straightforward way to include the contributions from
external radiation along the k and k'’ directions:

do do() s
dQedE}ntdEfxtdE}ntdE?xt - dQ. o ( - hard)
X 1 bt (B % As Er »
(14 bt;) Bt \ k| Emt TR
1 bty E;’“ oty A E}nt As .
X X
(1 + bty) E?"t |&| Emt /—Ikk,l (77)

Here, the internal proton contribution has been omitted for convenience, and the subscripts ¢ and f have been in-
troduced to indicate the initial and final electron arms. Equation 77, when taking into account the internal proton
contributions following equation 68, represents the result of adding internal and external Bremsstrahlung in a consis-
tent fashion, and is the final result of a generalized peaking approximation. Since both Eint and E¢** are emitted in
the same direction, we can again rewrite the distribution in terms of the total energies E and Ey radiated along k
and k’. This problem is exactly analogous to the transformation made between Equations 68 and 71, where a change
of variables was made from three energies E, E./, Ey to a total energy E and angle variables u and v. The result is

do _do® (1= Ghare) 1 1
dQedEé"tdEf"tdE}“tdE?‘t - dQ. o hard (1 +bt,~) F(l +btf)
(bt; +N)  (bty+Ap)  dE; dE;

kbt.(‘/kkl s k/btf \/W)Af Eil_'\‘_bt‘ E}—A,—bt,' (78)

We thus see that the \s of internal radiation play much the same role as the material thickness bt of external
Bremsstrahlung. One can also express the external radiation contribution in terms of the usual Bremsstrahlung
functions 8,,¢¢. One obtains forms which are very similar to those of Equation 67:

k
ext
8 (AE,,) = bt; ln(AE )
/

AEm)'

§XYAE,,) = bty In( (79)

These functions can simply be added to the corresponding 6(AEy,) values for internal radiation in Equation 68,
yielding the same result as Equation 78.

Thus far, the correction function ®°x* E™") has been neglected. At NE18 kinematics, the ratio in which the
TR it

function is expanded is small (< 0.1). Consequently we take only the first order term of ®***(z) of Equation 76 and
include it in Equation 77. Carrying through the angular integration, one obtains multiplicative factors &%t and <I>‘3"t

to include in Equation 78:
E; bt; E;
ext —1_ LAl 80
& (lkl) BT |kl (80)

(The same form applies for <i>‘}"" with i — f everywhere).
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V. EXPERIMENTAL SIMULATIONS

This Section describes two independent Monte Carlo programs used to simulate the NE18 experiment. Radiative
effects are simulated using three separate methods, each involving different approximations. The three methods, two
described in Section V A and one in Section V C, are found to produce consistent results.

A. Description of the Experimental Simulation

A Monte Carlo program, named SIMULATE [17], randomly generated the momenta and angles of the scattered
electron and proton vectors (i.e. the 6 quantities in terms of which the differential cross section is defined) with
a flat distribution over limits calculated to exceed the experimental acceptance. The energy and position of the
incident electron at the target were also generated randomly, to match the energy and spatial spread of the beam,
and the beam energy was corrected for ionization losses in the target. With a basic event at the scattering vertex
now determined, the possibility that any or all of the particles emitted real or virtual photons was modeled and
the particle vectors were adjusted accordingly. The scattered electron and proton vectors were then transported
through the target, applying ionization losses and a multiple scattering distribution, and subsequently transported
through the spectrometers. “Single arm” Monte Carlo models of the optics, apertures, and interfering materials
of the spectrometers were employed. Both forward and backward sets of matrix elements were used, to simulate
the optical resolution of the magnetic systems. Once the particle vectors were reconstructed back to target, they
were corrected to the scattering vertex using the same mean energy loss calculations employed in the actual data
analysis, and E,, and p,, were determined [17,18]. The successful events were stored in histograms, with each event
being assigned a weight of Ko, S mwgm. In the case of the A(e,e’p) reaction K equals a kinematic factor,
S represents the spectral function or the probability to find a proton with certain missing momentum and certain
binding energy inside the target nucleus A, and oy is the electron-proton cross section corrected for off-shell effects
according to the prescription of DeForest [12]. In the case of the 1H(e,e’p) reaction K equals unity, S equals a delta
function, and oep is the standard electron-proton scattering cross section. The factor (1 — Jhard)_l is the correction
for radiative diagrams involving hard virtual photons. The “generation weight” (Wgen) comes from the following
source. To increase computer speed, the limits in which event quantities are generated can be refined once partial
information about an event is known. These refinements are based on the acceptance limits of the spectrometers,
the cuts imposed on reconstructed Ep,, pm, and particle vectors, and the range in E,, (at the vertex) over which the
spectral function is defined. These refined limits are especially important in the generation of radiation. For example,
to take into account the possibility that a scattered electron “radiated into” the spectrometer momentum acceptance
from a higher momentum, one must use generation limits in momentum which are much wider than the acceptance.
However, once the electron’s momentum has been generated, one can determine the range of photon energy required
to produce a successful event. The generation weight reduces the event weight to compensate for the restricted limits

employed. Finally, the results histograms were normalized so that the number of events in each bin would correspond
;C(ACIAQEI AGIAQPI)M

to the number of counts expected from the experiment. The results were thus multiplied by —

where L is the experimental luminosity, and the other terms refer to the phase space volume and total number of
events used by the generation. Each histogram bin was assigned an inverse fractional error equal to the square root
of the total Monte Carlo weight contributing to the bin.

Two models of the radiative effects are included in the Monte Carlo program SIMULATE. (A third method for
including radiative effects, also included in the Monte Carlo program, is described in Section V C.) The first uses the
multiphoton energy distribution of Equation 49, evaluated using the full SPA expressions of Equations 31 and 32.
The angular distribution is taken to be the pure peaking approximation of Equation 50. The strength is distributed
among the three tails i = 1,2, 3 using the fractions Zf\-l'\_- (i is shorthand for the usual tail subscripts e, €', p’). The

second method tries instead to obtain the correct muftiphoton angular distribution by generating the total photon
energies Fe, Eo/, E, emitted along each direction, and summing the resulting photon vectors according to Equation
63. The distributions are generated according to the independent forms found for each tail in Equation 68. These
energy distributions were calculated using the approximate closed form expressions of Equation 36, found in the ultra-
relativistic limit of high momentum transfer and particle momenta. These two choices represent a trade-off between
the best available forms for the photon energy (first technique) and angular (second technique) distributions. The first
method can thus be referred to as the “peaking” technique, and the second as the “multiphoton” technique. Note that
these names are somewhat misleading: the “peaking” formalism certainly involves contributions from Bremsstrahlung
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radiation to all orders, and the “multiphoton” prescription involves the peaking approximation at the one photon
Jevel. One hopes, of course, that the two prescriptions give very similar results and this indeed turns out to be the
case. The distributions of counts calculated by SIMULATE using the two techniques are sufficiently similar that one
is hard pressed to see any differences on a plot of the projections in E,, and p,,. The integrated yields are less than
1% different at all Q2. This excellent agreement indicates the lack of sensitivity of our results to the fine details of
the photon angular distribution, and the validity of the UR limit at the energies we consider.

B. Comparison with Experimental Results

The distribution of hydrogen data counts in E,, and p, compared with the Monte Carlo calculation provides a
precise test of many aspects of the calculation. The true distribution of elastic events is precisely localized at E,, =0
and pm = 0; any deviation from this must be due to the improper understanding of kinematics, deviations from the
mean energy loss corrections, experimental resolution, and particle radiation. The last two effects should be correctly
modeled by the Monte Carlo. In particular, a comparison of the data and Monte Carlo on the hydrogen radiative tail
provides a precise test of the radiative procedure, unclouded by other physics. Finally the 'H(e,e’) data (corrected
for possible proton absorption losses in the target, spectrometer, and detector materials) must be consistent with
previous 'H(e,e') data.

The distribution of 'H(e,e'p) data counts as a function of Ey, is presented for the four values of Q? in Figure 5.
Superimposed on these figures is the corresponding Monte Carlo calculation. In this Monte Carlo simulation we used
the dipole form factor for the proton electric form factor and the parameterization of Gari and Kriimpelmann for
the proton magnetic form factor [19] [14]. Also included here are the Ep distributions for 2H(e,e’'p) (Figure 6), as
the single deuterium bound state is very sharply peaked at the binding energy of 2.2 MeV and so 2H data in this
coordinate provide the same precise test of the radiative procedure as 1H. Here we used the off-shell prescription
used by DeForest {12] to account for the electron-proton scattering cross section of the bound proton, and the Bonn
nucleon-nucleon potential [20] to account for the proton momentum distribution in the 2H target nucleus (see also
Ref. [21]). Note that all the calculations include the contribution from the recoiling proton in applying the radiative
corrections. The Figures clearly demonstrate that the radiative prescription describes the data to within its statistical
uncertainty. As a quantitative measure of the E,, and p,, dependent agreement one can evaluate the ratio of the
hydrogen experimental data to the hydrogen Monte Carlo data with a variety of E,, cuts. One finds that this ratio
varies by an amount well within the statistical error of the data for upper Em cutoffs from 50 to 130 MeV. The
statistics provide a precision from 1% at Q? = 1 (GeV/c)? to 4% at Q> =7 (GeV/c)2.

The angular distribution of the emitted photons can be reconstructed from the measured py, [22]. We will here
consider the Q2 = 1 (GeV/c)? case and only consider events with a missing energy (= w®) larger than 30 MeV since
in the region w® — 0 MeV the experimental resolutions, 8 MeV (10 MeV/c) in missing energy (momentum), do not
permit an accurate reconstruction of the photon angle. Figure 7 shows the angular distribution of the count rate for
events with E,, > 30 MeV. It is seen that electron radiation is predominantly in the direction of the initial and final
electrons, in accordance with the peaking approximation [23]. Note that a broad distribution of events is seen in the
direction of the outgoing proton. Next, the angular distributions were calculated in the soft-photon limit. In this case
the proton contribution corresponds to radiation from a Dirac particle with the usual form factors Fy (Q?) and F>(Q?).
The differential cross section was reduced to the cross section for (multi-)photon emission with total energy w and
angle 9, in the scattering plane. For this we used polar coordinates, integrating over the range of tan(¢-) accepted by
the phase space. Effects arising from imperfect knowledge of the phase space were suppressed through an energy cut,
w° < 80 MeV, applied for radiated photons along the incident electron beam. No normalization factors were used. As
Figure 7 shows, the agreement between data and simulation is excellent (note that only about 3 x 10% out of a total
of 5 x 104 events have radiated more than 30 MeV). To enhance the sensitivity to the proton contributions to the
radiative corrections, we have highlighted in the inset of Figure 7 the region sensitive to these proton contributions.
That such a region exists was illustrated before in Figure 4. We would like to emphasize the differences between
Figures 4 and 7. In Figure 4 the prominent dip along the proton angle reflects the character of dipole radiation
boosted along the particle’s momentum, emphasized in the single-photon limit. The electron radiation peaks also
have sharp minima at their maxima, but because the boost of the dipole pattern is so large, the minima are so narrow
that they are not visible. In Figure 7 a complete angular distribution of radiated photons is calculated, where all
multi-photon contributions are taken into account.
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C. Modified Equivalent Radiator Method

The “modified equivalent radiator method” (MERM) discussed in this Section is an ideal and simple alternative for
the simulation of internal radiation in A(e,e’p) reactions {18]. The method is uniquely suited to the problem in two
ways: simultaneously exhibiting the correct energy loss and missing energy cut dependences, and closely matching the
true multi-arm radiation distribution. No other peaking approximation or equivalent radiator technique possess both
of these advantages because the A values (or effective radiator thicknesses) used are mathematically unique up to a
freedom in the ratio of Ay /A. This feature helps to minimize potential systematic errors in the radiative corrections.
Improvement on this technique is possible by either determining the exact multi-photon angular distributions of the
internal radiation numerically solving Equation 45, or using the multi-photon peaking approximations described in
Section IV A, and subsequently folding in these more exact multi-photon angular distributions in an experimental
Monte Carlo simulation. However, this is in many cases unwarranted because (i) the only failing of this technique is a
slight underestimate of the angular distributions between the particle directions; and (ii) the systematic error in the
internal and external radiative effects is dominated by uncertainties in the theory itself.

Based upon the similarity of equations 67, and 79, the standard equivalent radiator approximation simulates
internal bremsstrahlung by passing the incident and scattered electron through two effective external radiators, both

with bt = A\FQ:
EQ « Q2

Note that for internal bremsstrahlung b and t are separately meaningless. The value is typically AEQ ~ 3.5% (see
Table X). The equivalent radiator method assumes the angle peaking approximation, where the radiation changes
the magnitude but not the direction of the electron’s momentum.

The modified equivalent radiator method relies on a similar technique to simulate the effects of internal radiation
on the count rates and kinematics of an A(e,e’p) reaction. The modification is necessary to reproduce both the exact
energy loss (v = € — €’) dependence due to radiation, as given by Eq. IL6 of Ref. [6], and the exact missing energy
dependence due to radiation, given by Equations 31 and 32. This is important because events are simultaneously sub-
ject to the Ae¢’ range given by the electron arm momentum acceptance and the AFE,, range applied in the coincidence
analysis. (Here A€’ = ¢/, — ¢ and AE,, = E — E,;, are the radiation-induced reductions in the energies ¢ and E,
from their elastic values.) The MERM differs from the standard equivalent radiator approximation in two ways. First,
as the scattering energy increases, a few percent of the radiation becomes peaked near the scattered proton direction
(the large acceleration of the proton in the scattering begins to overcome the suppression of radiation by its high mass).
Thus, the scattered proton is also passed through an equivalent external radiator, with bt values between 0.00037
[at Q% = 1(GeV/c)?] and 0.00524 [Q? = 7(GeV/c)?] (see Table X). Second, the three equivalent radiators have
three different thicknesses (the equality of the incoming and outgoing electron radiators in the standard equivalent
radiator approximation is only valid in the limit of no target recoil). The thicknesses are adjusted to reproduce the
radiation tail distribution of the 'H(e,e'p) reaction simultaneously as functions of the scattered electron energy ¢ and
the missing energy En,. It is convenient to determine the necessary thicknesses in the limit A€, AE,, < ¢,¢'; validity
at higher A€’ and AE,, is discussed below. Referring to Equation 21, we observe that Equation 31 has a logarithmic
dependence on AEp,: Ssoft(AEm) = Ag,, In(AEn,)+1n Ng,, . For elastic kinematics in the soft photon approximation,
Ag,, and Ng,, are functions of € and 6 only. Thus the En, dependence of the tail is given by Equation 39 as:

e_‘saoft(Em) _— NE"., (AEm)AEm . (82)
Inspection of Eq. IL.6 of Ref. [6] immediately yields analogous functional forms for dsoft (A€’) and e Suort(A€).
e 00t (8<) = N (A€ (83)

As discussed in the last part of Section III B, the only difference between 5, st(Em) and ,,5:(A€’) is a change in the
integration region. Thus one finds the exponent Ag,, = A = Asor at all kinematics. This fact will allow simultaneous
matching of both energy dependences. In practice Aoy is determined numerically by evaluating Equation 30 for two
different values of E,,.

In the MERM, the internal radiation is simulated by passing the beam electron, scattered electron, and outgoing
proton through external radiators with bt values A, Aer, and Ap. Analytic expressions for the resulting AE,, and
A€’ dependences are used to choose A values that reproduce the theoretical energy dependence of internal radiation
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(Equations 82 and 83). The expression for the A¢’ dependence induced by three external radiators, valid for small
A€’ (where ®°*(z) ~ 1), is derived in Appendix F of reference [18]:

do  ,_ , n do® 1 RAEN (AN [ RyAe'\
> _— =
dQe (E 2 € Ae ) dQe o F(l + Ae + Ael + )‘p') € 621 pIO (84)

The recoil factor R, (R,) takes into account that radiation of energy w by the beam electron (outgoing proton)
changes ¢ by a amount Rew {R,w). Here R, < 1 because the energy w radiated by the beam electron comes from
a reduction in € and in the kinetic energy of the recoil proton; for small photon energies R, ~ (e/€.,)?. The Monte
Carlo using the MERM technique determines the amount of energy radiated by the proton before computing e; ¢ is
chosen so that the proton is left on shell after it emits the real photons. For small photon energies the resulting proton
recoil correction R, ~ [M + 2esin®(8e//2)]/ (9" — |p'|). The equation for do(En < E + AE,,)/dS is obtained from
Equation 84 using the substitutions A¢’ — AE,, and R., R, — 1 (cf. Equation 6). The resulting formula satisfies an
important consistency check: for a trivial scattering process [do™ /dQ. = 1], it reduces to the integral of Equation 74
over E®** with bt = A\, + Aer + Ay and E®** = AE,, (assuming ®*** ~ 1).

Choosing the A parameters according to Equations 57 and 58, while an improvement over the standard equivalent
radiator technique (Equation 81), still would not satisfy the theoretical ¢’ and E,, dependences of Equations 82 and
83. Such an approach would e.g. neglect the “missing” terms of Equations 59 and 60, and, indeed, using Equation
61 instead of Equations 57 and 58 gives closer agreement. Instead, we require the modified equivalent radiator
approximation to reproduce the theoretical values of N, NEg,,, and Ait. Conveniently, Equation 84 exhibits the
same A¢' dependence as the theory [~ (A€’)*wt] for small A€, so long as the A’s used in the calculation are chosen
so that:

Ae + Aer + Apl = Atot- (85)

Multiplication of the cross section by the proper normalization factor (representing, among other things, the contri-
bution of the hard corrections) allows the calculation to agree with Equation 83 at small A€’. Because Ag,, = A«
(= Atot), the calculation can simultaneously satisfy Equations 82 and 83 at all small values of A€¢’ and AEy, if it uses
Ae and Ap that satisfy:

R:}‘R,;p, — ]VNe' — e(scl —55m . (86)

Reproducing the theoretical N, Ng,, and Aot places three conditions on the four unknowns (A, Aer, Ap, and the
normalization). The theoretical integral of the cross section over another observable (for instance p'®) could provide
a fourth condition (Np/) and remove the remaining ambiguity. However, the calculation is insensitive at the < 0.5%
level to even a 50% change in the ratio of Ay to A.. For definiteness, we choose the ratio Ay /Ae to be equal to
/\Zfak /APeak given by Equations 57 and 58:

Ae = feABeek (87)

Ay = fidBk (88)
where the fraction f; varies between 0.88 and 0.89:

)
fo=— P (89)

A,ﬁuak

(R R,* )

The A values resulting from these prescriptions are listed as Amed in Table X. The equivalent radiator parameters
are evaluated for central kinematics, and are not adjusted for the kinematics of each event. The errors produced by
neglecting variations in E and 6. are negligible for the NE18 acceptances (18] (< 0.04% in the normalization and
< 0.0012 in the \ values). Due to approximations in the formulas for 6+ and Jg,,, Equations 83 and 82 are not
valid for for Ae’ > €//(1 + 2¢/M) 54] The equations neglect two effects, which are actually present in the modified
equivalent radiator technique: do()(E — R.A€')/dQ. > do(V)(E)/dQ., and ®**(w/E) < 1. Thus, the modified
equivalent radiator calculation maintains good agreement (< 0.5%) with exact calculations of the radiation even for
large A€'.
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One might wonder why external radiation is able to exactly reproduce the energy dependence for internal radiation
at small photon energies. The single-photon expressions for internal and external radiation have the same 1/w
dependence. Agreement is maintained in the infinite-photon limit because the coherent multiple-photon exponentiation
in Equation 84 serves the same role as the incoherent multiple-collision factor (E***)% in Equation 74. To see this,
recall Equations 82 and 83, e = Nw?. The tail height (divided by the electron-proton scattering cross section) is
de® /dw = NXw*~1. For A = bt, this has the same energy (w or E°**) dependence as Equation 74, the multi-collision
form for external radiation. Now consider the single-photon version of the above, found by taking the logarithm:
8 = Anw + In N, with tail height d6/dw = A\/w. The single-photon form for external radiation is found in the ¢ — 0
limit of Equation 74: bt/E®** [taking ®°**(E***/|k|) ~ 1]. Thus the internal and external radiation have the same
energy dependence in both the multi- and single-photon limits, and the conversion from the single-photon to the
coherent multiple-photon form is mathematically identical to the conversion to the incoherent multiple-collision form.

Figure 8 demonstrates the success of the modified equivalent radiator technique in describing the distribution of
the NE18 'H(e,e'p) data counts as a function of E,, at a momentum transfer squared Q? of 1 (GeV/c)? (see Table I).
One can see that also in this method the fall-off in count rate over three orders of magnitude is well described by the
Monte Carlo simulation. The equivalent radiator procedure used in this Monte Carlo simulation implicitly makes two
assumptions about the effect of internal bremsstrahlung on kinematics: 1) photons can be treated as being emitted
exactly parallel to the outgoing particles (the angle peaking approximation), and 2) photons emitted along one of the
outgoing particles cause a change in energy only for that particle. In Figure 9 one finds that the modified equivalent
radiator approximation does a good job of reproducing the observed widths of the peaks in the angular distribution
of the photon events. To reduce the sensitivity to the finite resolutions, only events with E,;, > 20 MeV are displayed.
The events at ¥, =~ 15° are the result of radiation by the electron both before and after the scattering. The incoherent
addition of the radiation before and after the scattering in the equivalent radiator approximation underpredicts the
strength given by the coherent interference of the corresponding radiative diagrams. However, the missing strength
is less than 10% of the counts at 20MeV/c < w < 200 MeV /c—that is, less than 1% of the total counts. In only a
fraction of these events would the exact photon angle make the difference between the outgoing particles being inside
or outside of the experimental acceptance, and thus the error is insignificant unless one is interested in very detailed
angular distributions of (e,e’p) events.

The validity of assumption (2), that photons emitted along one of the outgoing particles were emitted by that
particle, is demonstrated in Figure 10. Here we see that radiation along the scattered electron direction has R =1,
and radiation in the incident beam direction has R ~ R,.. That is, radiation along the scattered electron direction has
the same effect on the kinematics as radiation by the outgoing electron (and analogously for the incident electron).
In the Figure, the cross over from the ¥, < 15° to ¥, > 15° occurs at R = 1.4 for both data and Monte Carlo
calculation. The calculation’s underestimate of events at © ~ 15 mr, discussed above, maps here to an underestimate
at R~ 14.

The MERM is effectively very similar to the “peaking” technique described in Section V A, which uses the best
available form for the photon energy. Both techniques reproduce the theoretical E,, dependence and provide a
reasonable description of the angular distribution of the radiation by incorporating simultaneous radiation along
the e, €', and p’ directions. The MERM technique improves on the “peaking” technique by reproducing the e
dependence as well. The MERM technique also provides significant gains in computation speed when simulating
small experimental acceptances where A, A., and /\;, are approximately constant and can therefore be evaluated
during Monte Carlo initialization. Since the effect of external radiation must be calculated anyway, the effect of
internal radiation is included simply by increasing the external radiation bt values by the corresponding A values.
This computational advantage disappears for larger acceptances where the time-consuming determination of the As
(via evaluation of Equation 30 and of Eq. IL6 of Ref. [6]) must be performed separately for each event. In such a
case one might prefer choosing the s according to Equation 61, and utilize the techniques described in Section V A.

VI. DISCUSSION AND SUMMARY

The attractiveness of electron scattering is that the photon couples weakly to the electron and hadrons, simplifying
the extraction of information from experimental data. However, in order to extract nuclear structure information
or information on the reaction dynamics, one needs to understand the radiative contribution to the measured cross
section in detail. In particular, as the momentum transfer increases in electron-induced hadron knockout or hadron
production reactions, the internal Bremsstrahlung contributions of the hadronic terms can not be neglected anymore.
Up to now the standard for the calculation of radiative effects has been the work of Mo and Tsai [6]. They derived
explicit formulas for radiative corrections in an inclusive (e,e’) framework, and provided a prescription for unfolding
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spectra in terms of the energy transfer v = e—¢'. It is important to note here that in analyzing results from the (e,e'p)
reaction, one must for consistency use form factors derived from previous scattering data using the same radiative
correction formulas.

The emphasis of this work is the extension of radiative corrections to coincidence (e,e'p) experiments. Though this
work only deals with the (e,e’p) reaction, the formalism presented to apply radiative corrections is general and can
easily be adapted for other electron-induced hadron production reactions. For the (e,e'p) reaction one can, in the
Plane-Wave Impulse Approximation, define a spectral function S(pm, Em) representing the probability of finding a
proton in the nucleus with missing energy E,, and momentum pp,. The difference between the calculation presented
here and that of Mo and Tsai is that we describe the radiative tails in terms of Ey,, rather than w. Specifically, the
measured variable E,, is shifted from its value at the scattering vertex by exactly the energy of any photon that
was emitted during the reaction; it thus provides an ideal coordinate with which to perform radiative computations.
Radiation from the scattered proton is taken into account, and constitutes > 10% of the internal correction for
Q2 > 1 (GeV/c)?2. Also, this contribution varies inversely with the ratio €’ [e. The relatively large magnitude of the
hadronic contributions to the Bremsstrahlung cross sections warrants a detailed investigation of the assumptions and
approximations made in the work of Mo and Tsai, in order to successfully apply radiative corrections to electron-
induced coincidence reactions.

In order to radiatively correct the full E,, and |pm| distribution, one must consider the angular distribution for
emitting multiple photons. We have determined that the distribution for emitting a total photon energy AE,, is, up
to-order a2, equivalent to the emission of any number of soft photons, each with energy less than AE,,. Therefore
exponentiating §,,7: provides a good approximation to the Bremsstrahlung cross section for emitting a total photon
energy up to a certain cutoff value, the case of practical interest for analyzing experiments. For practical purposes,
one employs peaking approximations to estimate radiative effects. This assumes that the emission of photons will
take place in the direction of the initial and final electron, with an additional contribution in the direction of the final
proton as its energy becomes highly relativistic. At low to intermediate momentum transfers (Q? =~ 1 (GeV/c)? to =
10 (GeV/c)?), a broad peak will begin to form around the final proton direction. In the full peaking approximation
however, the electron-proton interference term is taken to be zero. Thus, if one wants to maintain the correct number
of photons emitted but allows an error in the angular distribution due to the peaking approximation, one can assign
all the non-peaked photons to the different peaked directions (“extended” peaking approximation). One can also add
the external Bremsstrahlung in a consistent manner to these peaking approximations.

We have compared the radiative correction procedures found in this work with experimental data of the NE18
experiment [11] [21] [22]. We have used two separate procedures, via Monte Carlo, to simulate the event distributions.
In the first procedure we could incorporate in the simulation package either several of the peaking approximations
presented or the complete angular distributions for Bremsstrahlung. This procedure produced very good agreement
with E,, distributions of both the 'H(e,e’p) and *H(e,e’p) reactions, at momentum transfers between 1 and 7 (GeV/c)2.
It was also used to simulate a detailed angular distribution of the 'H(e,e'p) events for photon energies above 20 MeV,
and excellent agreement was found. The second procedure hinges on the peaking approximations and extends the
usual equivalent radiator method to reproduce both the event distribution of the 1H(e,e’) reaction in terms of the
scattered electron energy and the 'H(e,e’p) reaction in terms of missing energy. These constrain the choice of three
equivalent radiators of different thickness (for the incoming and outgoing electron and the proton). It is shown that
this simple procedure describes the 'H(e,e'p) tail distribution in terms of En, very well. Since the method hinges
on the (angle) peaking approximation, we also show from the NE18 1H(e,e'p) data why this assumption works well.
Unless one is interested in a detailed and high-precision understanding of angular distributions of (e,e’p) reaction, the
“modified” equivalent radiator method provides a simple, effective procedure for radiative corrections.
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by the National Science Foundation under Grant No. PHY-9115574 (Caltech). RGM acknowledges the support of a
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APPENDIX: EVALUATION OF BREMSSTRAHLUNG INTEGRALS

This appendix evaluates the integrals necessary for the evaluation of B(pi,p;, AE) as given by Equation 31. The
two cases i = j and i # j are considered separately.

First consider the case i = j which requires the evaluation of B(p,p, AE). In this case p2 = p? and the integrands
in Equation 31 are independent of x, yielding

- AE\  p°—|p| (p"—lpl) ( 2p° )]
B{p,p,AE) =4x|In| — |} + In +1n . 90
(.2, AE) [ <p°> TR G P+ 0] (%0)
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For the case i # j, consider the AE dependent part of B(pi,p;, AE) (note that the other two terms go to zero in
the relativistic limit (|p| — o0)),

1
dx [ AFE ]
—In|s—%—5 91
/o P2 P+ =) - pd) (1)
The evaluation of this integral in terms of Spence functions is standard. Writing
p:=alz —z4)(z —2-) (92)
where
a = (pi —p;)? (93)
and
2p? —2p;-p; £ \/4(19:- -p;j)? — 4p2(pi — p;)?
Ty = (94)
2a0
implies

[ ] s (5 2) ()
o P2 [P9+z(@?-p))| oa(z- —z4) AE T4
0 0 0
(P - - p) z-—1
ln( AR In o
_ <I)((p? —py) (s — 1)) +q)( (P} —p})z+ )
p) +z+(p) — pj) P) +z4 (0} - p})

*e ( (:;'-i w: fi)(:’_— 1))> ® (p2 (f?xj(pi’)i‘p?))] ' (93)

Here the usual identity

e (o) (15) -#(5557) ++(55) o

has been used.
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FIG. 1. Distribution of counts in Em and |p.| for (e,e'p) from hydrogen at Q? = 1 (GeV/c)?, demonstrating the existence
of “tails” due to Bremsstrahlung radiation. The E, axis runs in the bottom-right direction, from -25 to 125 MeV in bins of
2.5 MeV; the |p| axis runs towards bottom-left, from -160 to 160 MeV/c in bins of 5 MeV /c.

FIG. 2. Feynman diagrams contributing to first order Bremsstrahlung radiation cross section.

FIG. 3. Feynman diagrams representing virtual photon corrections to one-photon exchange ep cross section included here
and in ref. [4].

FIG. 4. Angular distribution of first order Bremsstrahlung photons from Equation 16, calculated at Q?=1,7 and 15
(GeV/c)2 and showing the improvement in the peaking approximation with increasing momentum transfer. The photon angle
is measured with respect to the direction of the incoming electron and given in degrees. The directions of the scattered electron
and proton are indicated by dotted lines and the notation 6., 6,.

FIG. 5. Distribution in E. of coincidence events recorded for the hydrogen target, compared with the prediction of the
Monte Carlo program SIMULATE.

FIC. 6. Distribution in E.. of coincidence events recorded for the deuterium target, compared with the prediction of the
Monte Carlo program SIMULATE.

FIG. 7. Calculated angular distribution of radiated events in comparison with NE18 data for w® > 30 MeV [22]. The solid
(dotted; see inset) curve shows the prediction in the soft-photon limit of the Monte Carlo program SIMULATE for electron
and proton contributions (electron only). The central angle 9., for the incident (scattered) electron and outgoing proton are
0° (37.3°) and -43.3°, respectively. Note that the inset shows the region -60° < J., < —-20° with a different vertical scale.

FIG. 8. E,, distribution of 'H(e,e’'p) events at Q> = 1(GeV/c)®. The data (points with error bars) are from the NE18
experiment [11] and the calculation (histogram) is performed with the modified equivalent radiator method.

FIG. 9. Comparison between the 'H(e,e'p) data and the modified equivalent radiator Monte Carlo simulation for the angle
Y0 = tan" (Pm.z/Pm,:) at Q> = 1 (GeV/c)®. Note that 9., is the projected angle of the radiation in the horizontal plane
rather than the spherical coordinate ¥,. To reduce the effects of the finite resolution, only events with Ey, > 20 MeV are
displayed. The peaks from radiation directed along the incident beam and the scattered electron direction are clearly visible
at 9, = 6. = 0 and 9, = 0., = 37.3°.
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FIG. 10. Comparison between the 'H(e,e'p) data and the modified equivalent radiator Monte Carlo simulation for the
recoil ratio R = E../A€’ at Q® = 1(GeV/c)?. To reduce the effects of the finite resolution, only events with E,, > 20 MeV are
displayed. The solid circles and left-hand histogram are the data points and Monte Carlo prediction for 9., > 15°, corresponding
to the peak at 8. in Figure 9. Note these events have the ratio R & R, = 1. The open circles and right-hand histogram are
for the peak at 8. = 0 (J., < 15°), and have R~ R. = 2.07.

TABLE I. Kinematics settings used.

Q? € ¢ 0.
(GeV/c)2 (GeV) (GeV) (deg)
1 2.01 1.41 373
3 3.19 1.47 49.0
5 4.21 1.47 54.2
7 5.12 1.47 57.0
6 12.1 8.9 . 14.0
9 15.4 10.6 14.0
12 18.3 11.9 14.0
15 21.0 13.0 14.0

TABLE II. Ratio of single photon Bremsstrahlung cross section calculated in the soft photon approximation to the full
calculation, at Q? = 1 (GeV/c)2. Various photon energies w® are considered; the photon angle is taken to be in the direction
of either the initial (i) or final (f) electron. The values in parentheses are the SPA /full ratios using a point-like proton in the
calculations.

|w® (MeV)] i f |
T 1.0023 (1.0002) 0.9993 (0.9993)
10 1.023 (1.002) 0.993 (0.993)
100 1.26 (1.02) 0.93 (0.93)
200 1.59 (1.04) 0.87 (0.87)

TABLE III. Ratio of single photon Bremsstrahlung cross section calculated in the soft photon approximation to the full
calculation, for photon energy w® = 100 MeV. Various momentum transfers Q? are considered; the photon angle is taken to be
in the direction of either the initial (i) or final (f) electron.

|Q? (GeV/c)?| i f|
1 1.26 0.93
5 1.14 0.93
9 1.05 0.99
15 1.03 ' 0.99
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TABLE IV. Values for the radiative correction functions &, evaluated at various momentum transfers and for cutoff photon
energies of 10 and 140 MeV. Note that the virtual correction hard is independent of this cutoff parameter. Note also that the

results depend on the choice of electron scattering angle as well as on Q?. The final column is the percentage contribution of
§°P 4 5PP

the proton-proton and electron-proton interference terms to the total Bremsstrahlung correction (Jﬂg!—ozﬂm).

Q? AEn, Shard soft Oores e Jeoft poRtep
(GeV/c)? MeV %
1 10 -0.07 0.332 0.015 0.007 0.354 6.2
140 0.158 0.007 0.003 0.169 5.9
3 10 -0.08 0.377 0.038 0.019 0.434 13.1
140 0.190 0.020 0.009 0.219 13.2
5 10 -0.08 0.398 0.056 0.028 0.482 17.4
140 0.205 0.030 0.014 0.249 17.7
7 10 -0.09 0.424 0.070 0.035 0.529 19.8
140 0.226 0.038 0.019 0.283 20.1
6 10 -0.09 0.519 0.019 0.032 0.569 9.0
140 0.323 0.011 0.017 0.351 8.0
9 10 -0.09 0.545 0.024 0.041 0.610 10.7
140 0.345 0.014 0.022 0.382 9.4
12 10 -0.09 0.564 0.028 0.049 0.641 12.0
140 0.360 0.017 0.028 0.405 11.1
15 10 -0.09 0.579 0.032 0.056 0.667 13.2
140 0.372 0.020 0.032 0.424 12.3

TABLE V. Single photon Bremsstrahlung spectrum, evaluated at several kinematic settings and integrated up to photon
energies of 10 and 140 MeV. S is calculated using the full SPA expressions of Equation 21; .0z is from the closed form
expressions of Equation 36 found in the ultra-relativistic limit. The final column present the percentage discrepancy of the UR
calculation relative to the full SPA.

Q® AE., Gsoft soft discrep.
(GeV/c)? MeV %
1 10 0.354 0.347 -2.0
140 0.169 0.166 -1.8
5 10 0.482 0.474 -1.7
140 0.249 0.246 -1.2
9 10 0.610 0.609 0.2
140 0.382 0.383 0.3
15 10 0.667 0.668 0.2
140 0.424 0.427 0.7
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TABLE VI. Comparison of § with dar and 8s.h. at various kinematics with w® = 10 MeV.

|Q2 (GeV/c)2 | 4 6MT JSchw I
1 0.284 0.266 0.277
5 0.402 0.315 0.363
9 0.520 0.496 0.478
15 0.577 0.542 0.517

TABLE VII. Importance of multi-photon emission on radiative correction factors for various kinematics and three values of
total photon energy emitted.

Q2 AEm exp('tsaoft)(l - 6hard) 1- Jsoft = Jhard
(GeV/c)? MeV

1 1 0.638 0.554
10 0.750 0.716
100 0.882 0.877
7 1 0.519 0.347
10 0.642 0.561
100 0.796 0.776
15 1 0.453 0.212
10 0.560 0.423
100 0.692 0.635

TABLE VIII. Comparison of the exact values (dezact) Of radiative correction factors with the “typical” peaking approximation
values (0peak) as given by Equation 57, in the UR limit. The two additional columns indicate the main sources of the discrepancy
as given by Equations 59 and 60.

Q2 (GeV/c)2 Je:r:act 6e:act -A 5ezact -A- Jep 6pea.k|
1 0.185 0.215 0.207 0.203
3 0.215 0.236 0.218 0.216
5 0.233 0.252 0.225 0.225
7 0.246 0.263 0.231 0.231
6 0.218 0.271 0.263 0.262
9 0.228 0.281 0.272 0.271
12 0.236 0.289 0.278 0.278
15 0.243 0.295 0.283 0.283
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TABLE IX. Effect of multi-photon emission on the angular distribution of emitted radiation. The fraction of photons emitted
at angles larger than a cutoff value A8 from either the initial or final electron direction are given for both single-photon emission
and multi-photon emission.

Q? Ad frac!” frac™”
(GeV/c)2 deg.

1 0.1 0.22 0.18
1.0 0.03 0.11

2.0 0.01 0.09

7 0.1 0.11 0.22
1.0 0.01 0.14

2.0 0.01 0.12

15 0.1 0.023 0.25
1.0 0.003 0.18

2.0 0.001 0.10

TABLE X. Comparison of the equivalent radiator thicknesses A for various kinematics. Values AEQ are from Equation 81,
X are from Equations 57 and 58, and A™°? are from Equations 85-89.

Q2 A\EQ Ae Aor Ap’ /\;nod )‘:r/tod ,\:I;od
(GeV/c)? % % % % % % %

1 3.322 3.936 3.767 0.042 3.502 3.614 0.037

3 3.561 4.149 3.790 0.326 3.652 4.282 0.287

5 3.669 4.279 3.790 0.485 3.786 4.619 0.429

7 3.736 4.369 3.790 0.590 3.883 4.836 0.524
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